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The relation between chaotic dynamics of nonlinear Hamiltonian systems and 
equilibrium statistical mechanics in its canonical ensemble formulation has been 
investigated for two different nonlinear Hamiltonian systems. We have com- 
pared time averages obtained by means of numerical simulations of molecular 
dynamics type with analytically computed ensemble averages. The numerical 
simulation of the dynamic counterpart of the canonical ensemble is obtained by 
considering the behavior of a small part of a given system, described by a 
microcanonical ensemble, in order to have fluctuations of the energy of the sub- 
system. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional 
anharmonic solid) show a substantial agreement between time and ensemble 
averages independent of the degree of stochasticity of the dynamics. On the 
other hand, a very different behavior is observed for a chain of weakly coupled 
rotators, where linear exchange effects are absent. In the high-temperature limit 
(weak coupling) we have a strong disagreement between time and ensemble 
averages for the specific heat even if the dynamics is chaotic. This behavior is 
related to the presence of spatially localized chaos, which prevents the complete 
filling of the accessible phase space of the system. Localized chaos is detected by 
the distribution of all the characteristic Liapunov exponents. 
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1. I N T R O D U C T I O N  

There exist different approaches to the interpretation of the statistical 
description of a macroscopic object. One is based on the introduction of 
statistical ensembles and stresses the probabilistic aspects. Another 
underlines the importance of dynamics and it is founded on time averages 
resulting from the dynamical evolution. These two approaches are 
equivalent if the ergodic hypothesis is valid. 

However, there exists no proof of ergodicity of a generic system; and 
the relation between these different approaches is still unclear. 

There is a widespread attitude that considers the ensemble approach 
as the only significant one. (~) Some authors, although they have explicitly 
taken into account the relevance of dynamics, have reached the conclusion 
that the two quoted approaches are equivalent as far as the physical con- 
sequences are concerned. For instance, Khinchin (a) and Truesdell (3) 
suggest, on the basis of some probability theorems, that for the "relevant" 
observables, time averages and ensemble averages should coincide, 
independent of ergodicity. On the other hand, Chirikov and co-workers (4) 
argue that for particular systems the ergodic hypothesis could be valid in 
the thermodynamic limit. 

More recent results (5'6~ show that these statements are far from con- 
clusive. For instance, in a chain of nonlinearly coupled oscillators equipar- 
tition of energy is violated if the energy density is smaller than a critical 
value, independent of the number of degree of freedom N. (6) For some par- 
ticular systems one can also obtain analytical bounds independent of N. (7) 

Moreover, it is well known that integrable systems may not have the 
expected statistical behavior. For instance, this is the case of the Fourier 
law of heat conduction. Since the pioneering work by Schr6dinger, (s) it has 
been shown that a harmonic system interacting with two heat baths at 
different temperatures does not follow the phenomenological law; only 
those systems having suitable chaotic properties are in agreement with the 
phenomenology. (9) 

Anyway, in such work on heat conduction, deterministic 
behavior--due to the dynamics--and stochastic effects~due to the 
presence of the heat baths--coexist. As a consequence, the actual role 
played by the dynamics in determining the statistical properties of the 
model is not clear. 

In this paper we study the effect of ergodicity-breaking on equilibrium 
statistical mechanics for two different Hamiltonian models. Some 
preliminary results can be found in Ref. 10. Here we consider a model of 
nontinearly coupled oscillators, the Fermi-Pasta-Utam (FPU) model, (~1) 
and a system of coupled rotators. 
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The canonical ensemble averages over suitable observables (giving 
thermodynamic quantities such as the specific heat) are compared with the 
corresponding time averages computed numerically along the "trajectories" 
of the systems. In numerical experiments, following the standard textbook 
definition, we simulate the canonical ensemble, considering a small part of 
a conservative system; in such a way we avoid the introduction of a noise 
source modeling the heat bath. 

In order to make an unambigous comparison between time and 
ensemble averages we had to choose an ensemble such that some physical 
quantities could be analytically computable. The canonical ensemble is fit 
for this purpose; in fact, computing averages with, for instance, the 
microcanonical ensemble would be a very hard task. The details of these 
models and the numerical method used in this work are discussed in 
Section 2. Section 3 is devoted to a comparison between ensemble and time 
averages. 

With regard to the FPU model, a qualitative agreement seems to hold. 
This could suggest the validity of Khinchin's approach, although a 
small but systematic deviation of the dynamical result with respect to the 
ensemble prediction is present. This point will be discussed in Section 3. 

We have obtained a significantly different scenario for the model of 
coupled rotators. In this case, at low temperatures we observe an 
agreement between time and ensemble averages. In contrast, in the high- 
temperature region we obtain an unexpected behavior: although the 
maximum Liapunov characteristic exponent is positive (i.e., the system is 
chaotic), there is a marked difference between time and ensemble averages 
in the specific heat. 

In Section 4 we interpret this peculiar behavior in terms of "localized" 
chaos, i.e., the trajectories seem to span only subsets of the whole phase 
space. 

Conclusions are presented in Section 5. 

2. T H E  D Y N A M I C A L  M O D E L S  

In the present work we consider dynamical systems composed of N 
nonlinearly coupled particles with nearest-neighbor interaction described 
by the Hamiltonian 

1 H =  = 1 ~P,+V(qi+l-q,) (1) 

and with periodic boundary conditions, i.e., qN+l = ql" 
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We consider two dynamical models according to the following choices 
of the interaction potential. In the first model (FPU)  we have (n) 

1 2 1 V(~) =~ ~ +~X~4 (2) 

The canonical coordinates qj and pj are the displacements from the 
equilibrium positions of nearest neighbor masses coupled by nonlinear 
springs in a one-dimensional lattice and the conjugate momenta, respec- 
tively. In the second model we have 

v(r 3) (3) 

The canonical coordinates qj and P1 are the angular coordinates and the 
angular momenta, respectively, of a chain of N rotators. In the limit e ~ 0 
model (3) is already in action-angle coordinates, and the frequencies 
coi(pi) = (~H/@i) = ps coincide with the action variables. 

The Hamiltonian of this system is a prototype for spin systems of 
statistical mechanics. 

We have integrated the equations of motion derived from these 
Hamiltonians in the following form 

0V 
qi . . . .  F~(q) (4) 

0qi 

by means of a standard leapfrog algorithm (12~ 

qi(t + At) = 2qM ) - q~(t - At) + (At) 2 F~{q(t) } (5) 

This is a canonical integration scheme, which does not alter the symplectic 
structure of our Hamiltonian systems; the errors are of order (At) 4 and 
with a suitable choice of the integration time step we obtain an excellent 
conservation of total energy E with zero mean fluctuations around the 
average value and relative errors AE/E ranging from 10 -s  to 10 -6. 

The simulation technique of the dynamics of a canonical ensemble 
consists in subdividing a chain of N particles into n subsystems of m par- 
ticles each, N=nm.  Passing from the microcanonical to the canonical 
ensemble, we should have: (a) Ei ~ E, i.e., the energy of the ith subsystem 
must be much smaller than the total energy, which amounts to having n 
large; (b) m large (thermodynamic limit), which leads to negligible average 
interaction energy between the subsystem and the remaining part of the 
original microcanonical system, which acts as a heat bath. 

In our numerical simulations we have used typically E i ~  10-2E.  In 
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previous work (6'13) we have shown that a reasonable "simulacre" of the 
thermodynamic limit properties of such systems can be obtained by 
choosing m not extremely large. Moreover, the ratio between the average 
interaction energy and the total energy of a subsystem can be a priori 
estimated as O(1/m). 

Together with the dynamics (p(t), q(t)) of the models under con- 
sideration we can follow the time evolution of any function f(p, q). 

Let us consider a given function of the coordinates of a system; we 
label fj such a function for the j th subsystem. We have f j=fj({Pi};  {q~}) 
with i E [m( j -  1) + 1, mj]. Then we define the time average over a time Y 
of a physical quantity as follows: 

f . y = n j =  I _  1 ~ J dtfj[{p,(t)}, {q,(t)}] (6) 

The additional averaging over all the subsystems has been introduced 
because there is no reason to privilege one subsystem, and this improves 
the statistics. When Y-~  oo we have f ~ - ~ f  using f to represent the 
asymptotic time average. We shall replace such asymptotic averages with 
finite-time averages whenever a good convergence is found. 

In the present paper we are dealing with time averages (6) and ensem- 
ble averages of potential energy and of specific heat. We have 

- - -  d t  V ( q i +  l ( t )  - q , ( t ) )  (7) =~,lim 1 1 :'- 
~ - H j = I  "ff]~ i = m (  1 ) + 1  

for the time average of potential energy; in curly brackets there is ~ .  
Following the standard definition of specific heat at constant volume, 

one has 

Cv=(-~-E})ImT 2 (8) 

where the following natural definition for the temperature has 
adopted: 

-~ ~ Z - ~ f  dt~p,(t) 

been 

(9) 

and the energy of the jth subsystem is given by 

Ej = Z -~ Pi -}- V(qi+l  -- qi) (10) 
i = m ( j - -  1 ) +  1 
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The definition of temperature in Eq, (9) may appear arbitrary. Usually 
temperature is defined by means of ensemble theory; but here we deal with 
time averages and the definition (9) seems the natural one. We remark that 
this choice leads to equivalence of time and ensemble averages at least for 
kinetic energy. 

We have always chosen random initial conditions; the details will be 
given for each model in subsequent sections. 

Not only thermodynamic quantities have been measured, like ~{/ and 
Cv, but also dynamical indicators of chaoticity of the phase space trajec- 
tories. We have computed all the Liapunov characteristic exponents (LCE) 
for these systems using the standard method, (~41 whose details are sketched 
in Appendix A. 

3. C O M P A R I S O N  BETWEEN T I M E  A N D  
ENSEMBLE A V E R A G E S  

3.1. The FPU model 

In this section we report the numerical results obtained for the FPU 
model, Eq.(2), with the choice ~o=0.1; these results give us the time 
averages of some observables, which have to be compared with their 
corresponding ensemble averages (computed in Appendix B). 

We have used n = m = 32. This choice of the parameters is a good 
compromise between a meaningful physical approximation and the 
feasibility of simulation for computer time requirements. In fact, we know 
that when the number of degrees of freedom is of the order of 20, a 
reasonable convergence to the "thermodynamic limit" is already obtained. 
This is observed when studying the relaxation toward equilibrium and non- 
equilibrium stationary states ~6) and the distribution of Liapunov charac- 
teristic exponents. (13) The curves of the spectral entropy versus the energy 
density in the first case and the curves representing the distributions of 
LCE are found to superpose independent of the value of the number of 
degrees of freedom m in a wide range of values, provided that m > 20. As 
far as n is concerned, we have estimated that n = 32 is reasonable after 
having examined the n and m dependences of our results. 

As we want to measure the energy fluctuations due to the dynamics, 
the time integration steps have been varied (according to the different 
values of the total energy of the system) in order to reduce as much as 
possible the level of numerical noise. So we have used At ranging from 0.03 
to 0.003, thus obtaining relative fluctuations of the total energy of O(10-6). 

The choice of initial conditions for the numerical simulations cannot 
be completely arbitrary, because we have chosen to compare time averages 
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with canonical ensemble averages. In fact, when using the canonical ensem- 
ble all the possible states in phase space are taken into account with the 
Gibbs weight; thus, the dynamical evolutions originating from initial con- 
ditions of low probability with respect to this measure could be exceptional 
paths in phase space. As we deal with a finite number of degrees of 
freedom, the canonical measure is not strictly orthogonal to other measures 
in phase space, such as Lebesgue measure, but in practice different choices 
of initial conditions (e.g., those of Ref. 6) would raise the problem of 
knowing if such paths could eventually join regions of larger measure dur- 
ing observation time scales. 

As a consequence of the above considerations, we have taken as initial 
conditions 

p~(O) = o 

x/2 [ 2rcji ) 
q,(0)= Z A]eos ~ - -~-+0 j  (11) 

j = l  

Aj=a/j 

where 4'j are random phases uniformly distributed in the interval [0, 2~]. 
This means that at t = 0  the spatial Fourier spectrum of {qt} is 
[~(k,)12~k2 2. These random initial conditions belong to the support of 
the Gibbs canonical measure; in fact, as the p, are Gaussian variables with 

qg 

1~ f 1 
0.8~ 

0.6[  

i 

I 

0.0 0,5 1,0 1,5 .0 2.5 

Fig. 1. Average potential energy versus temperature in the FPU model. (--) (Y/) given by 
(B.11) and (B.12). (~) Time averages. 
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zero mean setting, pi(0) = 0 means that the most probable values of the Pi 
are taken; moreover, the choice of the qi as in Eq. (11) introduces an 
average property (energy equipartition among normal modes) in a single 
configuration. Another way of generating initial conditions belonging to 
the support of the canonical measure is to use a Monte Carlo technique 
with the Hamiltonian in Eq. (2). Some tests have been performed also with 
initial conditions generated by a Monte Carlo program; the subsequent 
dynamical behavior gave statistical results in perfect agreement with the 
previous ones. 

The existence of a violation of equipartition at low energy densities (6) 
implies the nonergodicity of the Hamiltonian flux in phase space; hence, it 
is a natural development to investigate the effects of ergodicity-breaking on 
the thermodynamic properties of this system. We have measured the 
average specific potential energy ~ ,  the specific heat C~v, and the maximal 
Liapunov exponent as given by Eqs. (7), (8), and (A.3) as functions of the 
temperature. The ( q / )  and Cv are also given by Eqs. (B.12) and (B.7), 
respectively, as ensemble averages. We performed the numerical 
integrations up to times tma x ~ 5 X 10 4 (from ,-~2 x 10 6 up to ,-~2 x 10 7 
integration steps) and we always had a good convergence to the asymptotic 
values of ~ and C v. The comparisons are reported in Figs. 1 and 2, respec- 
tively. Figure 1 shows an impressive excellent agreement between the two 

8. 9 ~ '  / ~ / 0.056 

- -  o 

0,042 8.8 

0.7 
/ /  

0.6 , ' " ' ' z  

/ 
/ 

/ "  

/ 

0.5 

& t I. 

# # / 

/ 0 0 

I ~. 3. 4'. ~.o.o 
T 

0.028 

0.014 

Fig. 2. Specific heat versus temperature in the FPU model. ( - - )  C v given by (B.7) and (B.9). 
( ~ )  ~ v  obtained with initial conditions at equipartition. ((3) Nonequilibrium initial con- 
ditions. ( - - )  The maximal Liapunov exponent 21 (the scale for 2 t is on the right side). The 
arrow at the bottom indicates the equipartition threshold value. 
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kinds of averages. We have here a direct confirmation of the reliability of 
our numerical simulations of canonical ensemble. On the other hand, this 
result is not a priori obvious, as we shall see for the case of coupled 
rotators. 

Figure 2 displays a qualitative agreement between Cv and Cv. 
Anyway the experimental data are systematically displaced toward slightly 
smaller values, the deviation is about 3% on the average. However, 
denoting by e c the critical energy density of the equipartition threshold of 
Ref. 6 (this threshold corresponds to a temperature Tth = ec), we stress that, 
surprisingly, no significant change shows up in the behavior of specific 
hea t - -or  potential energy--when the temperature passes through the 
threshold value Tth. We shall comment in the following about this point. 

3.2. The  Coup led  R o t a t o r s  M o d e l  

In this section we report the results obtained for the model described 
by the Hamiltonian (3) with the choice e = 0.05. 

Let us remark that this system has two integrable limits for a fixed 
value of the coupling constant: (a) for vanishing energy one has a har- 

O" ~ 5  I I I I I I I 

0 .  0 4  

0.03 

O. 02 

0.01 

0"00.00 I L I i I L I , r , I , 
2.0 4 . 0  6.0 8.0 10.0 12.0 

I , I , 

1 4 . 0  16.8 18.8 

Fig. 3. Average potential energy versus temperature in the rotator model. (--) ( ~ )  given 
by (B.19). (~) Time averages. The temperature is expressed in units of the coupling constant. 
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monic chain of oscillators, (b) at infinite energy, because of the bounded- 
ness of the potential, a system of independent rotators is left. 

We have adopted n = m = 10 and n = m = 20. These values are slightly 
smaller than the previous ones used for the FPU  model only for practical 
reasons (computing trigonometric functions requires a larger amount of 
CPU time with respect to algebraic powers). Nevertheless, as far as the 
thermodynamic limit problem is concerned, these values are already in the 
good range. 

Again we have chosen random initial conditions in the form 

qi(0) = 0, pi(0) = Bc~i (12) 

where ai is a random number uniformly distributed in the interval [ - 1, 1 ] 
or with a Gaussian distribution with zero meatJ and variance equal to one; 
the value of B is given by the chosen value of temperature. We also used 
random qi(0) in order to check the sensitivity of the results on the initial 
conditions. 

In Fig. 3 we compare q7 and <q/)  at different temperatures, and Fig. 4 
we compare (7 v and C v together with )~1. 

For  the potential energy we observe a very good agreement between 
time and ensemble averages; only at high temperatures does a systematic 
small deviation show up. This can be understood with the following 

1 . 2 0  

Cv 
/ \ \  

1.00 o / 4. ---~. 

0. 80 iio 

o o 

0,60 

o o 
o. 4 o  o ~ 

o 

0.20  r 
o 

o 
o oj ~ o 

, j i , r 
~176 2 0 4 , 0  6 0 8.0 10.0 I .0 14,0 

T/~ 

Fig. 4. Specific heat versus temperature in the rotator model. (--)  Cv given by (B.17). (C)) 
Ten subsystems of ten rotators. ( �9 Twenty subsystems of twenty rotators, (--) 21 (the scale 
on the left gives 102~). The temperature is expressed in units of the coupling constant. 
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S.  0 
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5 . 0  
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I i i 
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I I _ , I J | , I 

0. 20000. 40000l 60000, 800 00. 100000. 120000. 
t 

Fig. 5. Probability distribution P(~)  versus the normalized energy ~ of a subsystem in the 
rotator model at different temperatures: (a) TIe = 1.0, (b) T/e = 10, (c) Tie = 20. 

g. 14 

0.  12 

0. 10 

0.08 

0l 06 

0. 04 

0. 02 

o. ~ .  6o 

b /f',l I ~' 

a 

--0, ~0 O" 20 01 00 01 20 01 40 01 60 

~(E-< E,)~E) 

Fig. 6. Specific heat ~ versus time in the F P U  model. Nonequilibrium initial conditions 
were assumed with ( - - )  T=0 .176<T~.  or ( - - )  T=I.13>T,.. Slow relaxation below the 
equipartition threshold is evident. 
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argument. In the limit of T ~ o% the ensemble average corresponds to con- 
sidering the coordinate (q i+l -q i )  uniformly distributed between 0 and 2re 
and this gives (~//)= e. From the positive value of 21 we can infer that 
there are some residual correlations among the q~ and these are at the 
origin of the small observed differences between ~' and (~ ' ) .  

As for the specific heat (Fig. 4), we observe an agreement at low tem- 
peratures independent of the value of )~1. This situation is not surprising, 
because at small energy the system of rotators is essentially a chain of 
oscillators with a weak nonlinear coupling, similar to the FPU model. 
Increasing the temperature, Cv drops to very small values, in strong dis- 
agreement with C v. We want to stress that this happens in a chaotic 
situation (21 positive). We return to this apparently paradoxical behavior 
in the next section. 

A direct method of visualizing the fluctuation of the energy Ej of a 
subsystem also has been adopted. Histograms of E; at different temper- 
atures have been constructed (Fig. 5); in the figure the indexj is omitted. 
We remark that at intermediate temperature the distribution P(g) is 
qualitatively a Gaussian with the right spread given by C v, while, when the 
temperature is increased, P(g) becomes strongly peaked around the 
average value (so Cv is very small). 

4. D I S C U S S I O N  

For the FPU model, the observed qualitative agreement between time 
and ensemble averages--independent of the chaoticity--could be inter- 
preted as a confirmation of the Khinchin-Truesdell approach. According to 
this point of view, for relevant physical observables the ergodic hypothesis 
should be the consequence of the great number of degrees of freedom 
rather than of the chaotic behavior of the system. However, we note that 
the normal modes are the "good" coordinates that are decoupled when the 
energy vanishes; in contrast to "real space" coordinates, the subsystems can 
also exchange energy only through linear coupling. Nevertheless, there is 
no contradiction with the failure of energy equipartition found in previous 
work(6); indeed, this phenomenon is detected looking at a quantity related 
to normal modes. 

More generally, from a physical point of view the relevant question 
regards the existence of an ergodicity restricted to a given function; 
therefore, it is possible that for a given system some functions display 
ergodicity, while others do not. 

One can wonder what would happen with different initial conditions. 
We have assumed initial conditions that are presumably far outside the 
support of the Gibbs measure, like wave packets. The first four normal 



Chaotic Behavior in Nonlinear Hamiltonian Systems 551 

modes of each subsystem have been excited with equal amplitudes and at 
different energies. The results so obtained show the following behavior: (a) 
For T> Tth the values of Cv are in good agreement with the previous ones; 
(b) when T< Tth we observe very slow relaxations starting very far from 
the values given by the ensemble averages (Fig. 6). Apparently the tem- 
perature is lower, the slower are the relaxations. Unfortunately, detecting 
these phenomena is a heavy task because of computer time requirements, 
and a systematic investigation of this point is omitted. These results suggest 
that the existence of the equipartition threshold is a relevant fact only for 
nonequilibrium properties. 

The situation looks more intricate in the case of rotators. At high tem- 
peratures, in spite of the exponential divergence of nearby trajectories in 
phase space (21 >0) the energy exchange among the subsystems is very 
small. This demonstrates the inconsistency of the naive idea that chaoticity 
implies good statistical properties. One can imagine that even though the 
trajectories are chaotic, they do not span uniformly the accessible phase 
space, but they are rather confined in some subregion. A way to infer 
something about this point consists in measuring all the Liapunov 
exponents {2~}, which are reported in Fig. 7 for N =  20 and random initial 
conditions. 

There is an evident difference between the high-temperature situation, 
with only a few positive LCE, and the intermediate-temperature case, 
where there is a substantial agreement between Cv and Cv, for which all 

0.18 ~ i T -- i I 

0 . 1 6  

0.14 

0.12 

0.10 

0. 08 

0. 06 

0. 02 

0. 00 -- - . . . . . . . . . .  
0, 00 0.20 0. 40 0. 60 0. 80 I. 00 

WN 
Fig. 7. LCE spectra. {2i} is plotted versus i/N. (�9 T/e=l.0, (,) T/~=50. In both cases 

N= 20. 
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the LCE are positive. Moreover, we remark that 21 in Fig. 7 is significantly 
different from ~1 reported in Fig. 3; this dependence on the initial con- 
ditions strengthens the above considerations about the phase space struc- 
ture. 

Similar results have been found with a smaller number of degrees of 
freedom. (~51 

5. C O N C L U S I O N S  

Our analysis has shown that: (a) there are situations in which the 
chaoticity of the system does not play a crucial role in the ergodicity of 
'"relevant" physical quantities; (b) on the other hand, the exactly opposite 
situation can show up where the naive idea that chaoticity implies 
ergodicity fails. Although this framework could seem inconclusive, we 
suggest that from a physical point of view the situation is much more 
reasonable than one might think. In this respect the main suggestion of our 
analysis is that there exists a "hierarchy" of chaoticity levels corresponding 
to ergodicity for different classes of observables. For instance, in the FPU 
model the potential energy is always ergodic, slight deviations are found for 
specific heat, while the same system is extremely sensitive with respect to 
equipartition properties analyzed in the Fourier space. In the case of 
rotators we observe that, for potential energy, deviations appear only at 
high temperature, while specific heat begins to show a much stronger dis- 
agreement at lower temperature. In addition, one could think that the 
failure of equipartition at low temperature could be detected experimentally 
in real physical systems; in fact, the usual way of measuring the specific 
heat in solids at low temperatures is by means of calorimetric techniques, 
i.e., some energy input is produced in the system under investigation (for 
instance, by electromagnetic interactions) and then the temperature 
increase is measured; this method assumes that the energy input is quickly 
thermalized, while this might not be the case at very low temperatures. 

As a final remark, we recall a simple example of how the observation 
time scale can affect the computation of ensemble averages. This is the case 
of the specific heat of the hydrogen molecule H2 as reported by Ma. (16) To 
compute the partition function for the H2 molecule, the rotational energy 
and nuclear spin energy contributions are considered. The two different 
possibilities of parallel and antiparallel nuclear spins must be taken into 
account with their relative statistical weights. Then an important dis- 
crepancy is found at low temperatures between experimental results and 
theoretical predictions. The reason is that, during usual observation times, 
the nuclear spin of H2 remains unchanged because of the very weak 
interactions with the electrons, of the weak interaction of the spins between 
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themselves, and of the negligible effect of the collisions; in other words, 
there is not statistical equilibrium. Thus, the correct calculation must take 
into account the effective number of molecules that are initially in the s = 0 
and s = l states and consider them as invariant quantities. 

A P P E N D I X  A 

A brief sketch of the definitions used for Liapunov exponents is repor- 
ted here. Let the Hamilton equations of motion be written as 

= f(x) (A.1) 

where x=(qI'''qN, Pl"''PN) and fi=OO/~Xi+N for i = l  ..... N, while 
f,= -OH/OXi_N for i =  N +  1 ..... 2N. Then we define a vector J in tangent 
space whose evolution is given by 

k = 1 ~Xk Jk (A.2) 

where the derivatives are computed along the trajectory given by (A.1). 
The maximal Liapunov characteristic exponent 2 l is defined as 

21 = l i r a  -1 In __lIJ(t)ll (A.3) 
, - ~  t I Ia (0) l l  

and is computed with a standard method. (14~ To evaluate the complete 
spectrum of LCE an approach based on the expansion rates of p-dimen- 
sional subspaces (14/ 

1 
Xp = lim - In IlJ(1)(t) x J(2)(t) x �9 .. x J(P)(t)U 

t ~ o o  t 
(A.4) 

is applied, where the ,I(~)(t) evolve according to Eq. (A.2) and ,I(~(0) are 
orthonormal vectors with unitary norm. The Liapunov exponents are then 
given by 

P 

Y~ ;~,= zp (A.5) 
i = l  

providing a basis for defining a numerical algorithm. In fact, a randomly 
chosen orthonormal basis in tangent space is made to evolve in time. The 
Gram-Schmidt  orthogonalization procedure is then applied at fixed time 
intervals. This allows the evaluation of partial expansion rates and, at the 
same time, keeps the angles among the J~k)(t) from becoming too small. 
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We remark that because of the symplectic structure of the Hamilton 
equations one has 2i = --22N ~+~; therefore one computes only the N non- 
negative LCE (i.e., i~< N). 

APPENDIX B. ENSEMBLE AVERAGES 

Let us now compute the partition function for the FPU model whose 
Hamiltonian is given by Eq. (2). 

The corresponding partition function is defined by the Gibbs measure 
a s  

ZN = dp~ exp - f i  5 p  ~ 
--oo i~  i=1  

x 1-1 dq, exp - f l  (q~+l-qi)2+-~2(q,+l-qi) 4 (B.1) 
o0 i = l  i = l  

We make this calculation with free boundary conditions. The 
integration over the Pl is trivially done and gives a factor (n/fl)N/2, where 
3 = 1/k~T.  

To calculate the configurational integral, we perform the following 
coordinate transformation: 

q01 = q 2 - - q l  

(,ON 1 = q N  - -  q N -  I (B.2) 

qO N = ~l - -  q u 

where 0 and 0 are not true coordinates, but are parameters. It is easily 
verified that the Jacobian determinant of this transformation is nonsingular 

get [~-~ql1:2" (PN qb)] = 1 (B.3) 
" .  qNq) J 

The existence of the thermodynamic limit for this variable transformation 
is easily verified by looking at the contribution of the coordinate ~ to the 
free energy. Thus, we can write 

(fl)u/2fo~ U I ~ ' (  ~ 2 1 ) ]  ZN-"~" H dcPiexp - f l  ( P i - ~ - 4 2 ( f  )4 
--co i = l  i=1  

( \ ~ ] \ ~ - ]  exp D_,/2[_\~-~] j j  f((o) (B.4) 
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where F is the Euler gamma function and D_1/2 is a parabolic cylinder 
function. 

The free energy is then given by Fu=-(1/Nfl) logZu (we take 
kB= 1), 

F N= - ~  Tln z T -  Tln F + ~  Tln 

- T l n  D ,/2 l_\2~.T/ J - 8;~ O (B.5) 

where the vanishing contribution O(1/N), as N is increased, comes from 

f(~b). 
The specific heat Cv (at constant volume, as we deal with a constant- 

length, one-dimensional solid) is obtained as 

C v = IT(cq2F/~T2)  

or, more explicitly, 

3 (d/dT) D_,/2(O)+T2 d [(d/dT) D___~2(O) ~ (B.6) 
Cv=-4 + 2T D-,/2(O) --d-TL D-1/2(0)  J 

with 0 = (1/22T) I/2, which can be reduced, with tedious but simple algebra, 
to 

l 1 f I -  9/4('C) -- I9/4('C) q- [7/4('C) -- I -  7/4(~') 
C v = -2 -~ ~ v2 -~ I l/4("f) -- Ii/4('c) 

[ I  5/4(7)-  I5/4("E)% I3/4(*L') I_/3/4("C)]2]  
EI_ i/4('c) - I1/4(27)] 2 J 

(B.7) 

where Iv(~ ) is a modified Bessel function and r = 1/82T. 
For sufficiently low temperatures, 0 and r become large, and therefore 

we can use the asymptotic expansion 

D 1/2(x)~e x2/4x i/2 1 - ~ x 2 +  ... (B.8) 

which, introduced in the above expression for Cv, yields 

3 1 / 2 - ( 1 5 / 8 ) 2 T  1 1 ( 3 / 1 6 ) 2 T -  (45/64)  2T 2 
Cv~--~-~ 1 - ( 3 / 4 ) 2 T  4 l - ( 3 / 4 ) 2 T  -I- (1-(3/4)2T) 2 (B.9) 

822/48/3-4-i3 
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having the right limiting value C v = 1 when 2, the nonlinear coupling con- 
stant, or T is set equal to zero. 

The ensemble average of the specific potential energy can be calculated 
by means of 

~z% <r a/~ (B.IO) 

where Z~v is the configurational part of the partition function. In the high-fi 
limit (low temperature), we can use the asymptotic expansion of Eq. (B.9) 
for the parabolic cylinder functions; thus, 

and then 

3 

3 l 

1 
1 ( 3 / 4 ) 2 T  2 

<ql>~-~ T 1-(3/4)2T 

(B.I1) 

which is useful essentially at low temperatures. 
At high temperatures we use the full analytic result, which reads 

<r ' r  eB/=*kL~kY/ -8Z D 'J2L\~! J 

+~(~-)-(2~) ( \ 2 2 J  D - ' / z L \ 2 2 )  _] 

where Z] is given by 

[(B) 1'2] 

Now we perform the same calculation for a weakly coupled chain of 
rotators described by the Hamiltonian given in Eq. (3). Its partition 
function is 
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ZN = dpi exp --/7 ~ Pi 
- - o r  i ~ 1  i 1 

x f  ~[ dq, exp -/7~ ~ [1-cos(q~+l-q,)] (B.13) 
- - re  i = l  i = 1  

where, again, /7 = 1/T, kB = 1. 
We consider again free boundary conditions. 
The first integral is trivially computed and gives the same contribution 

To evaluate the contribution of the configurational integral, the same 
transformation of variables has to be made: 

~ l  = q : - q l  

( D N _ I - ~ ' q N - - q N _ I  

(D N ~ ~] - -  q N  

co=q 

(B.14) 

and again the Jacobian determinant is equal to l; the co i vary in the inter- 
val [0, 2n]. 

Consequently, we get 

where Io(x) is a modified Bessel function and g(05) is a function of the 
parameter 05. 

Hence we get the following expression for the free energy: 

F N = - T I ~ l n n + ~ l n T + l n l o ( T ) l + e - T l n 2 n + O ( N  ) (B.16) 

and finally we get for the specific heat 

1 17 2 { 1 I1(e/7) [I1(e/7)]2"~ (B.17) 
Cv=~+ 1 fl lo(efl ) Llo(e/7)JJ 

which is easily evaluated numerically. 
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Another quantity that we can straightforwardly compute is the 
average specific potential energy, given by 

1 e cgZN (B18) <~>=--Nil Z N I  Og 

from which we get 

<~/'> = ~ I 1  I1 (~fl)] I0(efi)J (B19) 

We would like to make the reader aware of an unpleasant surprise 
that we had in using three different and widespread mathematical libraries 
while computing Iv(x) functions. When the arguments are of the order of 
few units, the results are completely wrong, but no warning about 
argument limitations is reported in the handbooks. 
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